High Order Discontinuous Cut Finite Element Methods for Linear Hyperbolic Conservation Laws with an Interface
نویسندگان
چکیده
Abstract We develop a family of cut finite element methods different orders based on the discontinuous Galerkin framework, for hyperbolic conservation laws with stationary interfaces in both one and two space dimensions, moving dimension. Interface conditions are imposed weakly so that stability ensured. A CutFEM elements is developed coupled to standard explicit time stepping schemes linear advection problems acoustic wave problem interfaces. In case interfaces, we propose space-time problems. show proposed conservative energy stable. For interface an priori error estimate proven. Numerical computations dimensions support analysis, addition demonstrate have expected accuracy.
منابع مشابه
Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws
It is well known that semi-discrete high order discontinuous Galerkin (DG) methods satisfy cell entropy inequalities for the square entropy for both scalar conservation laws and symmetric hyperbolic systems, in any space dimension and for any triangulations [39, 36]. However, this property holds only for the square entropy and the integrations in the DG methods must be exact. It is significantl...
متن کاملAccuracy of High Order and Spectral Methods for Hyperbolic Conservation Laws with Discontinuous Solutions
Higher order and spectral methods have been used with success for elliptic and parabolic initial and boundary value problems with smooth solutions. On the other hand, higher order methods have been applied to hyperbolic problems with less success, as higher order approximations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and show that spectral methods yield ...
متن کاملDiscontinuous Galerkin finite element methods for second order hyperbolic problems
In this paper, we prove a priori and a posteriori error estimates for a finite element method for linear second order hyperbolic problems (linear wave equations) based on using spacetime finite element discretizations (for displacements and displacement velocities) with (bilinear) basis functions which are continuous in space and discontinuous in time. We refer to methods of this form as discon...
متن کاملNon-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods
A new Petrov-Galerkin approach for dealing with sharp or abrupt field changes in Discontinuous Galerkin (DG) reduced order modelling (ROM) is outlined in this paper. This method presents a natural and easy way to introduce a diffusion term into ROM without tuning/optimising and provides appropriate modeling and stablisation for the numerical solution of high order nonlinear PDEs. The approach i...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2022
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-021-01756-w